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Motivations for Presentation

* Spatial Power Combining is an enabling
technology for achieving useful power levels from
solid state devices at millimeter wavelengths

* Oscillator-based combining came first,
historically, but has been passed over for what
practitioners believe to be more reliable amplifier-
based technology

* Recent results in oscillator-based combining
systems otfer possibilities for technology
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Historical Overview of Spatial
Power Combining

“Pre-History” (spatial) History (quasi-optic)

* Saiman, Breese and * L. Wandinger, V.
Patton, 1968 Nalbandian 1983

* F. Durkin, 1981 * Mink, 1986

* Hyltin, et. al., 1968 * Popovic and Rutledge,

* All of phased array 1988
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Why Combining is Necessary
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Classic Circuit Combining

Amplifiers
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Efficiency Limitation in
Wilkinson-Divider Tree

100
95 ¥
=
= 85
Q
5
5 80r
[ 401
o 75+
on
g 70 | Loss per stage
'-g —a—(.1dB
5 65 |——0.24B
O 60 L |[~*—0.3dB
—v— 0.4dB
55
50 | l | | I
2 4 8 16 32 64 128

January 4, 1999 Number of Devices



Feeding Incidental to PAE
though Significant in Gain

Amplifiers/Oscillators
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Caltech Grid Oscillator Format
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State of the Art in Grid
Oscillators

Size Devices Frequency Power Institute
10x10 ESC11LF 5.0GHz 550mW-ETP Caltech
4x4 FSC11X 11.6GHz 335mW-ETP Caltech
6x6 ESC11X 17.0GHz 235mW-ETP Caltech
5%5 ATF35576 4.7GHz 1.6W-ERP Colorado
10x10 FLK052 chip 9.8GHz Caltech
2-10x10 ATF35576 5.0GHz 3.8W-ERP Colorado
4-10x10 ATF35576 5.OGHZ 8.0W-ERP Colorado
2x3 MESFET 37.0GHz ImW Georgia Tech
6Xx6 InP-HEMT - 200mW-ERP Caltech
6x6 FHX35LG 4.4GHz 2.56W-ERP Clemson
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S.0.A. 1n Voltage Controlled
Grid Oscillators

Size Frequency | Tuning Range ERP Power Variation | Authors
7X7D 2.8GHz 200MHz/7.1% N/A 24.6dB Colorado
7x7B 6.0GHz 616MHz/10.3% | N/A 12.0dB Colorado
4x6B 4.9GHz 486MHz/9.9% N/A 2.0dB Colorado
4x4D 12.4GHz | 200MHz/(1.5%) | N/A N/A Virginia
4x4D |49GHz | | 300mw | 8.0dB Clemson
6x6D 6.3GHz 350MHz/(5.5%) | 1.4W N/A Virginia
4x4D 4.7GHz 330MHz/7% 900mW 10dB Clemson

January 4, 1999

Compiled by W. Wang, 1998

10




~Assemble & Go Coupled
Oscillators

Tuning Overlap
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High-Q Resonators Require
Tuning
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Phase-locked Loop
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Detector Pickup
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Frequency Stabilization
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Other Results Bearing on Future
Work '

* High-Combining-Efficiency Microstrip
Structure (Mortazawi)

e Phase Distribution Control (York,
Pogorzelski, et. al.) |

* Modulation (Wang)
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Pogorzelski’s Continuum Model

e Begins with Adler’s difference equations,

which describe a system of coupled
oscillators

e Extends Adler’s equations to a continuum,
resulting in a Poisson’s equation

* Demonstrates that Phase Perturbations
Diffuse through an Array

 Intentional end perturbations lead to
rogressive phase shift
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Coupled Oscillator Array
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Coupled Oscillators
(Continued)

Define the phase of the ith oscillator, ¢, ,by:

Hi :a)reft+¢i

Then, the continuum model yields,

& 2¢ a¢) | a)tune — wref
. = —Cu(t)8 (x—b
x> Ot Ao, u(1)0 (x=b)
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Beamsteering Dynamics

Equal and opposite detuning of the end oscillators; i.e.,

Ao, =-Aw, = Aw,

yields,
Ao, 3 2_sin(b\/5'; ) sin(x\/g',: ) (\ o
P(x.1)= Ao, , mzo (2a+1)o, (1=e7)
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Beamsteering Phase

Oscillator Phases
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Far Zone Radiation Pattern
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Injection Locked Coupled
Oscillator Array

Radiating Elements
Oscillators
Injection

Signal
Januar y 4, 1999 24



Beamsteering via Injection
Define the phaseby: 0, = @, + ¢,

do, “
E = a)tune i a)ref + Aa)lock (¢i+1 _ 2¢l + ¢i—l ) — SiPAwIOCk’p’inj(¢p B ¢inj)

82¢ 8¢ a)tune - a)ref Aa) |
-0 == + 0, — 0.
axz aT A,a)lock lp» Aa)l ock (¢ ¢an )
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Beam Steering

We injection lock two oscillators. The differential equation
- becomes

3}6 ‘2” [BS(x— b))+ B,8(x b)) —a—f = ~B,3(x ~ b)pyu() ~ B,8(x ~ b >Pz“<’”

The Laplace transform of the equation is,

J*F | |
pYe [B5(x b)+B5(x b )] _SF:“315(x_b1)%—325(x’—b1)%
Postulate,
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Beam Steering Solution

The boundary conditions at the ends and the two injection points
yield four equations for the four unknown constants and,
1 ' | |
F(x,s)= A {2sz2 cosh[\/;(Zh - |b2 - xl)] +2B,p, cosh[x/;(b2 + x)]
+ 2B, p, cosh[\/g(Zh - |b1 - x|)] + 2B, p, cosh[\/g(bl_ + x)]

+ B8P o Vs(2n-]p, - )| - SLA sinh|Vs(2 - (b, - ) ~[b, - )]

s Js
- P52, )] - 2 s[5, + )< )]
+ g%sinh Vs(2h- ‘bl xl)] 5; : Sinh[‘/E(Zh - (bz - bl) - |b1 B x|)]

(
. Z OIZZ;PI sinh|v/s(25, - |b, - )] + 152;1’2 sinh[Vs((b, +5,) +]B, - xl)]}
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Beam Steering Continued

where,

A = 45 sinh[/s(2h)]

+2B, cosh|vs(2b,)| + 2B, cosh[Vs(25, )] + 2(B, + B, ) cosh[v/s(2h)]
BB

L= {sinh[JE (2h)] - sinh[s(25,)] + sinh[s(25,)] - sinh| Vs (2h - 2(, - b, ))]}

+

The final value theorem yields,

1 |
B,p, + Bp, + —2_ Ble[(bz - b1)(p2 + pl) + (|b1 = xl - lbz - x’)(Pz - pl)]

X,00) =
P(x, ) B, + B, + B,B,(b, - b))

January 4, 1999 | 28




January 4, 1999

Beam Steering Example

B =8B =1
b, = —h

b, = h
p,=-60"

p, =60’
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Beam Steering Example

Oscillator Phases
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Gradual Phase Change

* Step injection phase change limited to less than ninety
degrees.

— Yields extremely limited beam steering angles.
— Can be mitigated by gradual phase change.

* Gradual change result can be obtained by convolution with
a Gaussian.

— Time domain solution is expressed as a sum of
exponentials.

— Convolution of a Gaussian and an exponential can be
expressed as multiplication by a function involving

January 4,99%5nplementary error functions. .



Convolution with a Gaussian

—a(1-1y)"

Let, g(T)=¢e
Then,

—0,T % | — o,T -0, ,0,/(4a 1
A g(,.L.) Ae { e 2/( )\/ﬁ_[erfC(vl)'—erfC(vz)]}

| G
where, U = —\/E(TO + ‘i—)

(04

n=vale(x+ 2|
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Gradual Steering Example

Choose, T, =060

o =0.01 Oscillator Phases

Finite Array
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Far Zone Field

Scanning Beam
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Phase Modulation

Pulse train modulation
“ v VCGO
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Modulation Out of Band to PLL

Received 1MHz signal Spectrum of 1MHz modulation
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Modulation Frequency In Band

Received 10kHz signal Spectrum of 10kHz modulation
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Constraints on Pulse Train

 The PLL integrates the modulation train and
drifts according to the mean value of the
train. => Zero -mean sequence

o The data rate in the pulse train must be
much larger than the bandwidth of the PLL
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Generic Replacement for a
Phased Array

L |
[ 1 1 ] ] , .

1 Detuning/
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